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Abstract

We present initial progress on so-called extended visual
servoing, an integrated approach of controlling mobile
robots equipped with multiple sensors. Our approach
to sensor fusion uses the mathematical framework of vi-
sual servoing for a higher dimensional feature space that
incorporates other sensors in addition to vision (which
still plays a central role). Analysis and simulation on
a planar mobile robot with “vision + sonar” shows the
initial success of the approach.

1 Introduction

This technical report builds on visual servoing, which
takes advantage of the rapid advancement of camera and
image processing technologies in order to provide feed-
back information for a robot controller [7, 8]. There are
two approaches to visual servoing: position-based and
image-based. Position-based methods use a geometric
model of the target to estimates the position and ori-
entation of the body being servoed, and then compute
the control inputs in Cartesian coordinates [13]. Image-
based visual servoing computes the control inputs di-
rectly from the image features [7], and it is thought to
be more robust with respect to camera calibration un-
certainty. Image-based approaches generally require the
so-called image Jacobian, the computation of which usu-
ally requires the depth of features being tracked [8]. Dif-
ferent methods address this drawback, such as 2-1/2D
visual servoing [10], stereo [9], or the use of a calibrated
target [4, 15]. However, they all introduce certain chal-
lenges, such as extra landmark points for 2-1/2D visual
servoing, expensive hardware and extra computation for
stereo vision, or restriction to a limited selection of spe-
cial landmarks.

Most visual servoing methods have been developed for
robot arms, but may be simply transfered to the control
of a mobile robot. In addition to vision, however, most
mobile robot platforms are equipped with extra motion
sensors in addition to vision, such as sonar [11, 14], laser
range finders, compasses, etc. Sensor fusion algorithms
generally focus on object pose estimation [1, 2], rather
than control. Therefore, we present a new approach to
robot control by directly applying feedback from multi-
ple sensors.

Our method is built on ideas of image-based visual
servoing. The goal of visual servoing is to move the

robot to a position and orientation such that the view of
a scene obtained from a camera will match a predefined
one that is stored in memory. This report takes the
natural next step to broaden our notion of the “view”
to include sensor values from multiple sensors, rather
than just vision. Due to its versatility, vision still take a
central role, so we call the approach Extended Visual

Servoing . Our approach inherits several useful features
from image-based visual servoing:

• Computational simplicity. There is no need to
transform sensor features to configuration space as
position-based visual servoing and most sensor fu-
sion methods.

• Independent of object model. The precise geometric
property of the object is not necessary since the
control is based on the sensor features only.

• Robustness to sensor and robot calibration uncer-
tainty. The feedback loop is closed around sensor
readings, decreasing sensitivity to sensor and robot
calibration.

By incorporating several sensor modalities, it may
be possible to take advantage of each sensor’s relative
strengths to complement the weaknesses of others. Sonar
applications, for example, are usually restricted to obsta-
cle detection and avoidance (rather than tracking) since
it is challenging to use sonar to distinguishing between
specific features. Vision systems, by contrast, provide a
means by which to distinguish between features, but are
poor feature depth estimators. This is a critical shortfall
for visual servoing because the image Jacobian almost
invariably depends on the depths of the features being
viewed. Hence, we argue, sonar is an ideal complemen-
tary sensor to augment a monocular visual servoing sys-
tem. Thus, we exploit the synergy between vision and
sonar, by taking advantage the strengths of both sensors
to control a robot.

This paper is arranged as following. After the intro-
duction in this section, we will model sensors and their
features in Section 2, then officially introduce the idea
of extended visual servoing in Section 3. An example
of applying the techniques with camera and sonar on a
planar mobile robot will be given in Section 4. In last
section, we will give some summaries and remarks.
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2 Feature Space

For a 2D ground mobile robot, the perspective projec-
tion of an object will bring us one measurable variable
γ in the image plane. Thus, the image feature space

considered in this paper is the simple projection of a
single point feature onto a 2D image plane, as described
below. In addition to the camera, we assume that a
sonar system augments the vision system to provide an
extended feature space , as described below.

2.1 Camera Feature

For simplicity, we employ a simple, calibrated 2D pin-
hole camera with perspective projection (Fig. 1).

Y

(x,y) X

γ

λ

Image Plane

O

Figure 1: Perspective projection for a planar pinhole
camera.

As shown in Fig. 1, the origin of the camera frame is
given by O. The X-axis is the optical axis that is per-
pendicular to the image plane and points forward from
the lens.1 Let p = [x, y]T be the position of a point in
camera frame. Then γ is its projection on the image
plane, given by

γ = λ
y

x
. (1)

where λ is the focal length .

1The choice of axes labels is slightly different from the common

choice in the literature.

2.2 Sonar Feature

Though there are many sensor suites from which to
choose, we model our sonar system as sequentially trig-
gered, narrow beam transducer that can measure dis-
tance from reflective surfaces, as shown in Fig. 2. The
sonar sensors are configured as an equally distributed
ring (only one sonar, at location β, is explicitly illus-
trated in the figure). The sensitive area of the sensor is
shown as an angle φ, which is generally less than 25◦ for
a narrow beam sonar.

δφ

r

l

X

Y

(x,y)

β

Sonar Transducer
O

Figure 2: Reflective model of a narrow beam sonar.

The specular surface of the object in field will bounce
the sound wave back to the original transducer, to mea-
sure the distance from the sensor to the object,

l = c · tTOF/2, (2)

where c is the speed of sound in air and tTOF is the
“time of flight” of the echo, i.e. the time duration from
the instant the sonar is activated to the moment the
echo is received. If the radius of the sonar ring is r, the
distance from an object located at (x, y) with respect to
the sonar center O can be approximated as

δ = l + r = (x2 + y2)
1

2 (3)

as long as l ≥ r. The angle of the target is often approx-
imated as the angle of the sonar β, but the error is too
large to be feasible in this paper.

2.3 Combining Vision and Sonar

We define the overall sensor information that can be ac-
quired for a robot regarding its motion as the senso-
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rium , S. In the simple example presented in this sec-
tion, S = R × R

+, since the image plane is represented
by γ ∈ R and the sonar measurement is represented by
δ > 0. Further, we categorize all the corresponding prop-
erties of the environment being measured by sensors as
landmarks , L. Again, in the simple example in this
section, there is a single landmark, which is a point in
the planar world, so L = R

2. Therefore, we model the
sensor suite as a mapping from the landmarks to senso-
rium, h : L → S. In our case, assuming the camera and
sonar frames are collocated for convenience, we have

h(p) =

[
λx/y√
x2 + y2

]
, where p =

[
x
y

]
. (4)

3 Extended Visual Servoing

In this section, we present a general approach to ex-
tended visual servoing that we will restrict later to the
case of a planar, unicycle-type mobile robot.

3.1 Rigid Kinematics

We consider the problem of positioning a robot using
feedback from onboard sensors. The configuration space
of a mobile robot is modeled as G = SE(3) for a spa-
cial robot or G = SE(2) for a planar robot. Therefore,
the pose of the robot is given by a rigid transformation
matrix

g =

[
R d
0T 1

]
∈ G

where d and R are the position and orientation of the
robot expressed in the fixed world frame, respectively.
Recall that TG ' G × g ' G × (Rn(n−1)/2sR

n), where
g = TIG is the tangent space at the identity [12]. We
make the identification via the “left inverse”, namely if
(g, ġ) ∈ TG, then, for G = SE(3), we have

ξ = g−1ġ =




0 −ωz ωy vx

ωz 0 −ωx vy

−ωy ωx 0 vz

0 0 0 0


 ∈ g

and (ω, v) ∈ R
3sR

3 .

Physically, ξ represents the linear v = [vx, vy, vz ]
T and

angular ω = [ωx, ωy, ωz]
T velocities relative to the in-

stantaneous body-frame. Similarly, for G = SE(2) and

g = se(2), we have ω ∈ R, v = [vx, vy]T ∈ R
2, and

ξ = g−1ġ =




0 −ω vx

ω 0 vy

0 0 0



 ∈ g , and (ω, v) ∈ RsR
2 .

3.2 Landmark Kinematics

Consider the group action of an element g ∈ G that
translates a point pb = [xb, yb, zb, 1]T ∈ E

3 in the robot
based coordinate system to the fixed world frame pw =
[xw, yw, zw, 1]T , via

pw = g pb. (5)

Since the velocity of any fixed point in the world frame
is zero, then its velocity in robot body based frame can
be obtained by differentiating (5), i.e.,

ṗb = −g−1ġ pb = −ξ pb . (6)

Consider the trivial “landmark function” ` : G → L,
where L = E

n represents a single feature point and G =
SE(n), n = 2 or n = 3. Then

`(g) = g−1 pw = pb . (7)

By using the above tangent space identification, the tan-
gent map T` : TG → TL admits a convenient matrix
representation, J`, given by

ṗb =

J`︷ ︸︸ ︷[
p̂b −I3×3

0T 0T

] [
ω
v

]
,

where p̂b =




0 −zb yb

zb 0 −xb

−yb xb 0



 .

(8)

Again, for SE(2) we have ω ∈ R, v = [vx, vy]T ∈ R
2,

pb = [xb, yb, 1]T , pw = [xw, yw, 1]T ∈ E
2, and

J` =

[
p̂b −I2×2

0 0T

]
, where p̂b =

[
−yb

xb

]
. (9)

It is straight forward to generalize the above expres-
sions for landmark functions ` that incorporate multiple
landmark features.
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3.3 Feature Kinematics

Suppose L ⊂ E
n is some set of landmarks, that is, points

in the world, fixed in a world frame, and S is the sensor
feature space. Let ` : G → L denote the mapping from
robot configuration to relative landmark configuration,
as described above. Let h : L → S be the sensorial
mapping. Then Th : TL → TS is the tangent map (or
Jacobian) relating landmark velocities to feature veloci-
ties, with matrix representation Jh, namely

ṡ = Jhṗ. (10)

where s = h(p) denotes the sensor measurement.
The Jacobian for our simple “sonar + vision” senso-

rium defined in the previous section can be found by
differentiating (4), namely

ṡ =

[ ẏ
xλ −

yẋ
x2 λ

(y2 + x2)−
1

2 (yẏ + xẋ)

]

or
ṡ = Jhṗ (11)

where

Jh =

[ η
δ −

γη
λδ 0

γ
η

λ
η 0

]

is the sensor Jacobian obtained by noticing

p =



x
y
1


 = h−1(s) =




δλ
η
δγ
η

1


 (12)

where η = (γ2 + λ2)
1

2 .

3.4 Extended Visual Servoing

The control objective is to move a robot to align the
sensor measurements, s = h ◦ `(g), with a predefined
value s∗. If we define U as the control input space of the
robot and G its configuration state space, then the con-
trol input u ∈ U of a mobile robot will change the pose
(position and orientation) g ∈ G of the robot through
robot kinematics and dynamics, which in turn will up-
date the location of landmarks L with respect to the
robot frame. Then the on board sensors will further
map the landmarks to sensor space s ∈ S.

For the present work, we posit a purely kinematic
plant model, actuated in the body frame. For fully ac-
tuated systems, dimU = dim g, but we do not limit our-
selves to that case. In fact, the example investigated in

Sec. 4 has fewer control degrees of freedom than rigid
body degrees of freedom. Let M be the mapping be-
tween control input and body velocity. Then the follow-
ing commutative diagram describes the flow of velocities

U
M

// TG

��

T`
// TL

��

Th
// TS

��

G
`

// L
h

// S

or, in coordinates

ṡ =

J︷ ︸︸ ︷
Jh J` M u .

There are now many possible control inputs. Suppose
that ṡ∗ is a desired velocity in sensor space. Then, we
could let

u = J†ṡ∗ (13)

where J† is the pseudo-inverses of J . In some cases, it
may actually be possible to find an exact inverse to J .
For example, if the spaces G ' L ' S are diffeomorphic,
and ` and h are diffeomorphisms, and the system is fully
actuated, so that M is nonsingular, then we can compute
J−1, as we have done for visual servoing in several prior
contexts contexts [4, 5, 15]. In this report, we consider
a case in which J is full rank, even though G and L are
not diffeomorphic.

4 Example: Rolling Penny Robot

Consider a cart-like “rolling penny” or “Hilare” robot.
The configuration of the robot and its equivalent rolling
penny illustration are shown in Fig. 3. A camera is fixed
to the robot body such that its coordinate system is iden-
tical to the body frame, and its optical axis is aligned
with the X-axis of the robot. In addition, there is a sonar
ring with origin also coincident with the body frame ori-
gin.

For illustration purposes, we assume that there is only
one object in the field of view of the robot, and that
the camera observes a single feature of the object; for
example one could use the image-plane center of mass
as done in [4, 15], to obtain the overall direction of the
center of mass of the object relative to the robot. We
consider convex objects, toward the robot, such that the
reflecting point of the object is coincident with the center
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Xb
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Wheel
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Wheel

Body
Camera

Yb

u

1

2

X

Y

Z

u

Figure 3: Top view of the configuration of a cart-like robot (left). The equivalent rolling penny model (right).

of the color mass as illustrated in Fig. 4. However, we
believe this restriction may be relaxed or modified to
accommodate a different selections of image features.

For simplicity, as mentioned, the sonar and camera are
configured in a way such that the center of the sonar ring
is the origin of the camera frame. Thus, the coordinate
systems for the camera, sonar and robot are identical.
Further, although the sonar sensors are always installed
as a ring and theoretically could obtain a 180◦ or 360◦

field of view, we restrict ourselves to the portion that
coincident with the field of view of the camera.

Recall the mappings s and ` for our “camera + sonar”
sensorium, measuring a single point, are given by (4) and
(7), summarized for convenience here:

p =




x
y
1



 = `(g) := g−1 pw ,

s =

[
γ
δ

]
= h(p) :=

[ y
xλ

(x2 + y2)
1

2

]
,

where g ∈ G = SE(2), p ∈ L = E
2 and s ∈ S = R × R

+.
Thus, s = h ◦ `(g).

The two inputs of the robot are the forward speed u1

and the angular velocity u2, thus

[
ω
v

]
=

M︷ ︸︸ ︷


0 1
1 0
0 0



 u

Recall that ṡ = Jh J` Mu where Jh is given by (11)
and J` is given by (8). Thus we have

ṡ = Ju (14)

where

J = Jh J` M =

[
γη
δλ −

η2

λ

−λ
η 0

]
.

Note that dimG > dimS. However, we have chosen
dimS = dimU = 2. Thus, noting that η2 = λ2 +γ2 > 0,
the inverse

J−1 =

[
0 −

η
λ

λ2

η
nγ
δ

]

is well defined for δ > 0. Given desired features s∗ =
[γ∗, δ∗]T , we can apply a simple proportional control
law with positive definite gain matrix K, namely

u = J−1K(s∗ − s) (15)

which implies
˙̃s = −Ks̃ (16)
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Y

(x,y) X

γ
λ

Image Plane

O

δ

Figure 4: Top view of a planar mobile robot with both
camera and sonar.

where s̃ = (s − s∗) is the sensorial error.

To avoid collisions with the feature object, and to keep
the feature within the field-of-view, one could easily in-
troduce a Navigation Function, as done in [5]. In this
case it is straight forward since the space S = R×R

+ is
so simple.

5 Simulation Experiments

For our simulation experiments, a target resides at pw =
[6, 3]T m in the world frame. The initial location of the
robot body frame was coincident with the world frame
at t = 0. As described, we assume for convenience that
the coordinate frames of the sonar ring and camera coin-
cide with the body frame. Since the camera is assumed
calibrated, we scale the image measurement to achieve
an effective focal length of λ = 1m.

Let s∗ = [0, 2]T m, a goal that corresponds to moving
the mobile such that the object is right in front of the
robot, γ∗ = 0, at a distance of δ∗ = 2m. Then applying
the approach above, we can easily obtain closed loop
control for the task with a given tolerance (that will
depend in practice on the true pixel resolution of the
camera, and the sonar resolution).

In Fig. 5, the subplot “Control Inputs” shows the in-

put translational and rotational velocities of the robot
with time. The subplot “Image Feature” is scaled to
pixel coordinates, assuming a true focal length of 5mm,
and 120pixels/mm. The “Distance” subplot illustrates
the change of γ, the horizontal position of the object in
the image plane (corresponding to the sonar measure-
ment).

In Fig. 6, the subplot “Body” shows the trajectory
of the target observed by the robot in the robot body
frame. The subplot “Global” shows the trajectory of
the mobile robot in the global frame during the process
of moving and turning to approach the target with the
desired distance and orientation.

As shown by this anecdotal simulation, the system
converges as expected. Notice that since we are only
controlling 2DOF, there is a one dimensional symme-
try that we do not control – it corresponds to a circle
around the target for which the robot is facing inward.
If the target were moving in time, the algorithm could
be modified for tracking, as done in [3].

6 Summary

This work builds on and enhances many techniques de-
veloped for visual servoing. For example, one can still
apply Navigation Function to avoid obstacles and keep
features in the field-of-view [6], or integrate motion plan-
ning to achieve long distance movement and obstacle
avoidance [16]. By applying extended visual servoing,
we can take advantage of mathematical framework of
visual servoing, without limiting ourselves to a single
sensor modality. There are several advantages to this
approach.

First, using sensor features from multiple sensors, we
can obtain a Jacobian with increased rank, hence map
the feature velocity to a larger subset of the robot’s mo-
tion. With a bit of ingenuity, it may in some cases be
possible to find a diffeomorphism between the robot’s
motion and the sensorial feature motion. In the case of
an underactuated robot, like the example we studied, we
described an extended feature constellation that allowed
us to use feedback linearization on a subset of the avail-
able configurations, giving rise to a one-dimensional set
of solutions.

A second advantage arises by selecting sensors that
complement each other. Even in cases where there is
a known diffeomorphism between sensor and robot co-
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Figure 5: Control inputs and controlled sensor features.
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ordinates, representing the Jacobian may be “messy”
in image coordinates [5], or may require special targets
[4, 16]. However, the sensor Jacobian in the present pa-
per may be compactly written making very few assump-
tions about target geometry.

Third, as we noticed in, Section 2 and 3, although
the landmarks can be expressed in a global frame, the
expressions are not used in derivation of extended vi-
sual servoing. Hence, the algorithm is insensitive to the
geometric model of the landmarks. Admittedly the land-
mark feature set was trivial in the present context, and
so more must be done to see how these ideas can be
generalized.

Fourth, by integrating the sensor features in the body
based coordinate system, we can bypass the common
difficulties of sensor fusion, e.g. the extra step of trans-
ferring the feature information back to the global frame,
and then calculating the control input in the global coor-
dinate system, which has to be remapped into the robot
frame.

Finally, although we derived the extended visual ser-
voing control algorithm based on a kinematically actu-
ated planar mobile robot, we believe that extending it to
both dynamically actuated mobile robots such as a sub-
marine or a blimp, or employing the algorithms for a the
fixed-camera and moving robot arm should be possible.
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